martes, 16 de junio de 2009

"GENÉTICA"
La genética (del término "Gen", que proviene de la palabra griega γένος y significa "raza, generación") es el campo de las ciencias biológicas que trata de comprender cómo la herencia biológica es transmitida de una generación a la siguiente, y cómo se efectúa el desarrollo de las características que controlan estos procesos.

ADN, base de la herencia genética


La genética es una rama de las ciencias biológicas, cuyo objeto es el estudio de los patrones de herencia, del modo en que los rasgos y las características se transmiten de padres a hijos. Los genes se forman de segmentos de ADN (ácido desoxirribonucleico), la molécula que codifica la información genética en las células. El ADN controla la estructura, la función y el comportamiento de las células y puede crear copias casi o exactas de sí mismo. La herencia y la variación constituyen la base de la Genética.

En la prehistoria, los seres humanos aplicaron sus intuiciones sobre los mecanismos de la herencia a la domesticación y mejora de plantas y animales. En la investigación moderna, la Genética proporciona herramientas importantes para la investigación de la función de genes particulares, como el análisis de interacciones genéticas. En los organismos, la información genética generalmente reside en los cromosomas, donde está almacenada en la secuencia de moléculas de ácido desoxirribonucleico (ADN).

Los genes contienen la información necesaria para determinar la secuencia de aminoácidos de las proteínas. Éstas, a su vez, desempeñan una función importante en la determinación del fenotipo final, o apariencia física, del organismo. En los organismos diploides, un alelo dominante en uno de los cromosomas homólogos enmascara la expresión de un alelo recesivo en el otro.

En la jerga de los genéticos, el verbo codificar se usa frecuentemente para significar que un gen contiene las instrucciones para sintetizar una proteína particular, como en la frase el gen codifica una proteína. Ahora sabemos que el concepto "un gen, una proteína" es simplista y que un mismo gen puede a veces dar lugar a múltiples productos, dependiendo de cómo se regula su transcripción y traducción.

Subdivisiones de la genética


La genética se subdivide en varias ramas, como:

  • Clásica o mendeliana: Se preocupa del estudio de los cromosomas y los genes y de cómo se heredan de generación en generación.
  • Cuantitativa, que analiza el impacto de múltiples genes sobre el fenotipo, muy especialmente cuando estos tienen efectos de pequeña escala
  • Molecular: Estudia el ADN, su composición y la manera en que se duplica. Asimismo, estudia la función de los genes desde el punto de vista molecular.
  • de Poblaciones y evolutiva: Se preocupa del comportamiento de los genes en una población y de cómo esto determina la evolución de los organismos.
  • del desarrollo: Se preocupa de cómo los genes controlan el desarrollo de los organismos

La nanotecnología


Eduardo J. Carletti

La mayoría de la gente que escucha por primera vez el témino "nanotecnología" cree que se habla de las técnicas incluidas en el término "microtecnología", la tecnología usada en la microelectrónica y que ha transformado enormemente la sociedad en las últimas décadas. La relación no es del todo incorrecta, pero no es exacta.

La microtecnología es la tecnología que nos permite fabricar cosas en la escala del micrón. Un micrón es una millonésima de un metro, o, para darse una idea más clara, la milésima parte de un milímetro. Todos sabemos cuánto es un metro: más o menos la distancia entre nuestra nariz y la punta de nuestros dedos cuando extendemos del todo un brazo hacia un costado de nuestro cuerpo. Si tomamos una milésima parte de esta longitud, tenemos un milímetro. Un milímetro es muy pequeño, pero todavía podemos verlo. Ahora imaginemos que tomamos un extremo de este milímetro, lo apoyamos en nuestra nariz y lo estiramos hasta que llegue al extremo de los dedos de la mano que se encuentra en el brazo que hemos extendido. Ahora volvemos a dividir en mil partes. Tenemos una milésima de la milésima parte de un metro, una longitud llamada micrón. Esta es la escala en la que se trabaja cuando se construyen dispositivos tales como memorias, circuitos lógicos y de computación.

Los dispositivos de memoria y de lógica en venta en 1985 tenían estructuras con componentes de aproximadamente un micrón de ancho. Para 1995, momento de la aparición del Pentium, se habían alcanzado tamaños de más o menos un tercio de micrón, 350 nanómetros. Se trabaja ya en estructuras de 100 nanómetros, es decir, de un décimo de lo que se había logrado en 1985.

Un nanómetro es la medida que se obtiene si uno toma un micrón, aplica un extremo sobre la punta de la nariz, lo estira hasta el extremo de los dedos del brazo extendido y lo divide en mil partes. Es una milésima de una millonésima de metro, es decir, una milmillonésima de metro.

El nanómetro marca el límite de reducción a que podemos llegar cuando hablamos de objetos materiales. En un nanómetro caben entre tres y cinco átomos. Aunque en el universo hay cosas más pequeñas que los átomos, se trata ya de cosas que no se pueden manipular. En nuestra vida cotidiana, los átomos son los ladrillos de construcción más pequeños que podemos utilizar.

Ahora que estamos pensando en términos de átomos, démosle una mirada a un objeto producido por microtecnología. Aunque la estructura tiene una millonésima de metro de ancho, sigue siendo muy grande. Hay miles de átomos en la superficie de este objeto y miles de millones en su interior. Es un trozo del macromundo. En el interior de este macroobjeto del tamaño de un micrón existe la posibilidad de hacer miles de divisiones para obtener un nivel mayor de detalle. Si logramos llegar a un nivel de detalle del orden del nanómetro y trabajamos con una precisión de nivel atómico, el poder de nuestra capacidad para controlar el comportamiento de este objeto puede hacerse inmenso.

El ejemplo más grandioso de esta potencia se presenta en cada cosa viviente. Se requiere un entorno de agua —el elixir de la vida—, y por esto se le suele llamar "el lado húmedo de la nanotecnología". Las formas de vida que conocemos están hechas de células rellenas con agua, pequeñas bolsas de vida que típicamente tienen tamaños de varios micrones, como en el caso de los glóbulos blancos de la sangre humana.

Cada una de estas "bolsas" está repleta de miles de pequeñas máquinas que se mueven por el mundo líquido de la célula, ocupándose de la industria de la vida —enzimas, hormonas, RNA y ADN—, todas esas cosas que uno oye nombrar en los nuevos textos de medicina, biotecnología e ingeniería genética. Esas pequeñas máquinas son moléculas. Tienen un rango de tamaño de entre uno y varias decenas de nanómetros. ¡Son nanomáquinas! Están formadas por entre miles y decenas de miles de átomos. Y cada uno de esos miles de átomos tiene una ubicación exacta, definida con precisión por un diseño de ingeniería, de modo que el conjunto de esa nanomaquinaria pueda funcionar correctamente.

El ejemplo más impresionante son las enzimas. Cada una de ellas es una factoría química completa reducida a una escala de nanómetros. Estas enzimas han evolucionado durante miles de millones de años para lograr una fabricación cada vez más perfecta de sus productos químicos. En la mayoría de los casos han alcanzado los límites de la perfección. Son los catalíticos finales y fundamentales para esa reacción química que es su trabajo vital. Estas nanomáquinas moleculares son quienes hacen que la vida funcione, no sólo para ellas mismas, sino en cada planta, pájaro o entidad que se arrastra o ha arrastrado sobre la superficie de nuestro planeta.

Esta nanotecnología húmeda es increíblemente poderosa. De hecho, cuanto más se sabe sobre ella más se comprende lo mucho que queda por saber. Pensemos en la hermosura de una joven, o de una flor, o qué increíble es que un ojo humano pueda ver o que un cerebro pueda pensar. Y entonces uno piensa: este lado húmedo de la nanotecnología (que la mayoría de la gente llama biotecnología) puede hacer todo.

Pero a pesar de este increíble poder, hay varias cosas que no se pueden hacer y que nunca se podrán hacer en el lado húmedo. Una de las más importantes es conducir electricidad como un hilo metálico, como una conexión dentro de una computadora o incluso en un semiconductor. Nunca se logrará —las razones son largas para describirlas aquí— con esta biotecnología. De hecho, la mayor parte de la revolución industrial que impulsa la sociedad moderna no es un tributo de la biotecnología, es producto del desarrollo de máquinas de vapor, motores a nafta y todo tipo de artefactos eléctricos, como radios, televisores, teléfonos y computadoras, todos ellos producidos por la tecnología del otro lado, el lado "seco", un área que parecería apuntar a ser la de mayor desarrollo potencial.

Imagínense lo que podría llegar a ser nuestro mundo si se pudiesen fabricar en el lado seco, sin agua ni células vivas, objetos con el grado de perfección atómica que la vida logra rutinariamente en el lado húmedo. Imagínense por un momento el poder que tendría el lado seco de la nanotecnología. La lista de cosas que se podría lograr con una tecnología así parecen algo así como la lista de deseos navideños de nuestra civilización.


viernes, 5 de junio de 2009

1. Introducción

La biotecnología no es, en sí misma, una ciencia; es un enfoque multidisciplinario que involucra varias disciplinas y ciencias (biología, bioquímica, genética, virología, agronomía, ingeniería, química, medicina y veterinaria entre otras).
Hay muchas definiciones para describir la biotecnología. En términos generales biotecnología es el uso de organismos vivos o de compuestos obtenidos de organismos vivos para obtener productos de valor para el hombre.
Como tal, la biotecnología ha sido utilizada por el hombre desde los comienzos de la historia en actividades tales como la preparación del pan y de bebidas alcohólicas o el mejoramiento de cultivos y de animales domésticos. Históricamente, biotecnología implicaba el uso de organismos para realizar una tarea o función. Si se acepta esta definición, la biotecnología ha estado presente por mucho tiempo. Procesos como la producción de cerveza, vino, queso y yoghurt implican el uso de bacterias o levaduras con el fin de convertir un producto natural como leche o jugo de uvas, en un producto de fermentación más apetecible como el yoghurt o el vino Tradicionalmente la biotecnología tiene muchas aplicaciones. Un ejemplo sencillo es el compostaje, el cual aumenta la fertilidad del suelo permitiendo que microorganismos del suelo descompongan residuos orgánicos. Otras aplicaciones incluyen la producción y uso de vacunas para prevenir enfermedades humanas y animales. En la industria alimenticia, la producción de vino y de cerveza se encuentra entre los muchos usos prácticos de la biotecnología.

La biotecnología moderna está compuesta por una variedad de técnicas derivadas de la investigación en biología celular y molecular, las cuales pueden ser utilizadas en cualquier industria que utilice microorganismos o células vegetales y animales. Esta tecnología permite la transformación de la agricultura. También tiene importancia para otras industrias basadas en el carbono, como energía, productos químicos y farmacéuticos y manejo de residuos o desechos. Tiene un enorme impacto potencial, porque la investigación en ciencias biológicas está efectuando avances vertiginosos y los resultados no solamente afectan una amplitud de sectores sino que también facilitan enlace entre ellos. Por ejemplo, resultados exitosos en fermentaciones de desechos agrícolas, podrían afectar tanto la economía del sector energético como la de agroindustria y adicionalmente ejercer un efecto ambiental favorable. Una definición más exacta y específica de la biotecnología "moderna" es "la aplicación comercial de organismos vivos o sus productos, la cual involucra la manipulación deliberada de sus moléculas de DNA". Esta definición implica una serie de desarrollos en técnicas de laboratorio que, durante las últimas décadas, han sido responsables del tremendo interés científico y comercial en biotecnología, la creación de nuevas empresas y la
reorientación de investigaciones y de inversiones en compañías ya establecidas y en Universidades.
La biotecnología consiste en un gradiente de tecnologías que van desde las técnicas de la biotecnología "tradicional", largamente establecidas y ampliamente conocidas y utilizadas (e.g., fermentación de alimentos, control biológico), hasta la biotecnología moderna, basada en la utilización de las nuevas técnicas del DNA recombinante (llamadas de ingeniería genética), los anticuerpos monoclonales y los nuevos métodos de cultivo de células y tejidos.

2. Biotecnología

El creciente interés que en los últimos años ha despertado la biotecnología, tanto en los medios académicos como en la actividad económica, se ha traducido, entre otras cosas, en una proliferación de definiciones. Esta relativa abundancia es reflejo, por un lado, del carácter multidisciplinario de la biotecnología (Microbiología, Ingeniería Química, Bioquímica y Química) y, por el otro, de la dificultad que existe para fijar estrictamente sus límites. Todas las definiciones tienen en común que hacen referencia al empleo de agentes biológicos y de microorganismos.
Una definición amplia de biotecnología sería: Un conjunto de innovaciones tecnológicas que se basa en la utilización de microorganismos y procesos microbiológicos para la obtención de bienes y servicios y para el desarrollo de actividades científicas de investigación.
(1) Se ha observado que la biotecnología no representa nada nuevo, ya que tanto la utilización de microorganismos en los procesos de fermentación tradicionales, así como las técnicas empíricas de selección genética y de hibridación, se han usado a lo largo de toda la historia de la humanidad. Esto ha llevado a distinguir entre la biotecnología tradicional y la nueva biotecnología. Equivocadamente se tiende a asociar los procesos de fermentación con la primera y la ingeniería genética con la segunda.
La ingeniería genética no es sino el más reciente y espectacular desarrollo de la biotecnología, que no sustituye ninguna técnica preexistente, sino que más bien enriquece y amplia las posibilidades de aplicación y los usos de las biotecnologías tradicionales.

3. Antecedentes.

La historia de la biotecnología puede dividirse en cuatro períodos.
El primero corresponde a la era anterior a Pasteur y sus comienzos se confunden con los de la humanidad. En esta época, la biotecnología se refiere a las prácticas empíricas de selección de plantas y animales y sus cruzas, y a la fermentación como un proceso para preservar y enriquecer el contenido proteínico de los alimentos. Este período se extiende hasta la segunda mitad del siglo XIX y se caracteriza como la aplicación artesanal de una experiencia resultante de la práctica diaria. Era tecnología sin ciencia subyacente en su acepción moderna.
La segunda era biotecnológica comienza con la identificación, por Pasteur, de los microorganismos como causa de la fermentación y el siguiente descubrimiento por parte de Buchner de la capacidad de las enzimas, extraídas de las levaduras, de convertir azúcares en alcohol. Estos desarrollos dieron un gran impulso a la aplicación de las técnicas de fermentación en la industria alimenticia y al desarrollo industrial de productos como las levaduras, los ácidos cítricos y lácticos y, finalmente, al desarrollo de una industria química para la producción de acetona, "butanol" y glicerol, mediante el uso de bacterias.

La tercera época en la historia de la biotecnología se caracteriza por desarrollos en cierto sentido opuestos, ya que por un lado la expansión vertiginosa de la industria petroquímica tiende a desplazar los procesos biotecnológicos de la fermentación, pero por otro, el descubrimiento de la penicilina por Fleming en 1928, sentaría las bases para la producción en gran escala de antibióticos, a partir de la década de los años cuarenta. Un segundo desarrollo importante de esa época es el comienzo, en la década de los años treinta, de la aplicación de variedades híbridas en la zona maicera de los Estados Unidos ("corn belt"), con espectaculares incrementos en la producción por hectárea, iniciándose así el camino hacia la "revolución verde" que alcanzaría su apogeo 30 años más tarde.

La cuarta era de la biotecnología es la actual. Se inicia con el descubrimiento de la doble estructura axial del ácido "deoxi-ribonucleico" (ADN) por Crick y Watson en 1953, seguido por los procesos que permiten la inmovilización de las enzimas, los primeros experimentos de ingeniería genética realizados por Cohen y Boyer en 1973 y aplicación en 1975 de la técnica del "hibridoma" para la producción de anticuerpos "monoclonales", gracias a los trabajos de Milstein y Kohler.

Estos han sido los acontecimientos fundamentales que han dado origen al auge de la biotecnología a partir de los años ochenta. Su aplicación rápida en áreas tan diversas como la agricultura, la industria alimenticia, la farmacéutica, los procesos de diagnóstico y tratamiento médico, la industria química, la minería y la informática, justifica las expectativas generadas en torno de estas tecnologías. Un aspecto fundamental de la nueva biotecnología es que es intensiva en el uso del conocimiento científico. En el período anterior a Pasteur, la biotecnología se limitaba a la aplicación de una experiencia práctica que se transmitía de generación en generación. Con Pasteur, el conocimiento científico de las características de los microorganismos comienza a orientar su utilización práctica, pero las aplicaciones industriales se mantienen fundamentalmente como artesanales, con la excepción de unas pocas áreas en la industria química y farmacéutica (como la de los antibióticos), en las cuales se inicia la actividad de I y D en el seno de la corporación transnacional.
En todos estos casos, la innovación biotecnológica surgió en el sector productivo; en cambio, los desarrollos de la nueva biotecnología se originan en los centros de investigación, generalmente localizados en el seno de las universidades.

Las nuevas biotecnologías pueden agruparse en cuatro categorías básicas:
· Técnicas para el cultivo de células y tejidos.
· Procesos biotecnológicos, fundamentalmente de fermentación, y que incluyen la técnica de inmovilización de enzimas.
· Técnicas que aplican la microbiología a la selección y cultivo de células y microorganismos.
· Técnicas para la manipulación, modificación y transferencia de materiales genéticos (ingeniería genética).

Aunque los cuatro grupos se complementan entre sí, existe una diferencia fundamental entre los tres primeros y el cuarto. Los primeros se basan en el conocimiento de las características y comportamiento y los microorganismos y en el uso deliberado de estas características (de cada organismo en particular), para el logro de objetivos específicos en el logro de nuevos productos o procesos. La enorme potencialidad del último grupo se deriva de la capacidad de manipular las características estructurales y funcionales de los organismos y de aplicación práctica de esta capacidad para superar ciertos límites naturales en el desarrollo de nuevos productos o procesos.
Desde un punto algo diferente, es posible agrupar las tecnologías que forman parte de la biotecnología en los seis grupos siguientes:
· Cultivos de tejidos y células para: la rápida micropropagación "in vitro" de plantas, la obtención de cultivos sanos, el mejoramiento genético por cruza amplia, la preservación e intercambio de "germoplasma", la "biosíntesis" de "metabolitos" secundarios de interés económico y la investigación básica.
· El uso de enzimas o fermentación microbiana, para la conservación de materia primas definidas como sustratos en determinados productos, la recuperación de estos productos, su separación de los caldos de fermentación y su purificación final.
· Tecnología del "hibridoma", que se refiere a la producción, a partir de "clones", de anticuerpos de acción muy específica que reciben el nombre de anticuerpos "monoclonales".
· Ingeniería de proteínas, que implica la modificación de la estructura de las proteínas para mejorar su funcionamiento o para la producción de proteínas totalmente nuevas. · Ingeniería genética o tecnología del "ADN", que consiste en la introducción de un "ADN" híbrido, que contiene los genes de interés para determinados propósitos, para capacitar a ciertos organismos en la elaboración de productos específicos, ya sean estos enzimas, hormonas o cualquier otro tipo de proteína u organismo.
· Bioinformática, que se refiere a la técnica basada en la utilización de proteínas en aparatos electrónicos, particularmente sensores biológicos y "bioships"; es decir, "microchips" biológicos, capaces de lógica y memoria.

A diferencia de la primera clasificación, que señala las técnicas propiamente tales, la segunda se refiere también a las actividades económicas en las que se hace uso de dichas tecnologías. La nueva biotecnología crea nuevos procesos y nuevos productos en diversas áreas de la economía.
Como estos procesos se basan en los mismos principios, ya sea que se apliquen en un sector económico o en otro, ello introduce cierto grado de flexibilidad, ya que permite la movilidad entre diferentes sectores. Por ejemplo, los procesos de fermentación pueden aplicarse para la producción, en gran escala, de alcohol o de antibióticos como la penicilina, o en escalas menores para la producción de aminoácidos o en la industria farmacéutica. Esto facilita la movilidad de factores productivos y tiene impacto sobre la calificación de la mano de obra, la cual, aun cuando deberá adaptarse a este nuevo perfil tecnológico (tanto en términos cuantitativos como cualitativos) posiblemente logre al mismo tiempo una mayor facilidad de empleo. A nivel mundial el interés por la biotecnología es indudable, como se ve a través del frecuente abordaje de tales temas en los periódicos, libros y medios de comunicación.

Algunos descubrimientos útiles serán una consecuencia directa del uso de las técnicas de ingeniería genética que logren transferir determinados genes (a veces incluso genes humanos) a un determinado microorganismo apropiado, para hacer el producto que es precisamente requerido en el mercado. Determinadas proteínas humanas y algunos enzimas requeridos en Medicina se conseguirán de esta forma, en el futuro. Otros muchos beneficios, serán el resultado de la fabricación mediante técnicas de fermentación, de anticuerpos específicos para fines analíticos y terapéuticos. Estos anticuerpos monoclonales se producirán mediante el crecimiento de células en grandes tanques de cultivo, utilizando el conocimiento biotecnológico adquirido por el cultivo de microorganismos en grandes fermentadores, como por ejemplo la producción de antibióticos como la penicilina.

Se están desarrollando en la actualidad importantes descubrimiento y aplicaciones comerciales en cada uno de los campos de la Biotecnología, incluyendo las que tienen lugar en las industrias de fermentación, la biotecnología de los enzimas y células inmovilizadas, el tratamiento de residuos y la utilización de subproductos. Aquellos procesos que resulten productivos serán útiles a la sociedad, atractivos para la industria por motivos comerciales y en algunos casos recibirán el apoyo de los respectivos gobiernos.

Una gran potencialidad de la biotecnología se da en el campo de la investigación y el desarrollo científico, ya que proporciona herramientas que permiten una mejor comprensión de los procesos fisiológicos, por ejemplo, del sistema inmuno-defensivo, o que reducen, en forma considerable, los plazos de la I y D, facilitando así los procesos de innovación tecnológica. A su vez, con el advenimiento de nuevas técnicas en el campo biológico, la actividad de la I y D en este campo tiende a hacerse cada vez más científica y menos empírica, acentuándose así las características de intensidad científica propias de la biotecnología. Resulta claro que siendo la biotecnología un sistema de diversas innovaciones científico-tecnológicas interrelacionadas, no todas ellas evolucionan al mismo ritmo.

Las condiciones de mercado, las expectativas de beneficios, aspectos organizativos y de gestión, entre otros, favorecen la rápida puesta en marcha y difusión de algunas de estas tecnologías, relegando a otras. La literatura sobre la innovación tecnológica acostumbra distinguir entre aquellas innovaciones que surgen como respuesta a una situación de mercado, y a expectativas de beneficios económicos, de aquéllas que se originan en el área de I y D como resultado de un proceso continuo y acumulativo de desarrollo científico-tecnológico. En el primer caso se habla de "demand or market-pull" y en el segundo, de "technological-push".

Ha sido frecuente, en los últimos tiempos, señalar el láser y la biotecnología como ejemplos del segundo tipo de innovación. Es decir, descubrimientos científicos a los que se arriba sin una aplicación específica predeterminada en mente, pero que luego encuentran una gama considerable de aplicaciones prácticas. Sin embargo, pareciera más correcto considerar ambos factores, el inherente proceso científico-tecnológico y aquél que corresponde a incentivos económicos, como complementarios. Así, en el caso de la biotecnología, aun cuando ésta nace en el ámbito de la I y D, de las muchas aplicaciones posibles, las que se desarrollan primero son aquellas que ofrecen expectativas de importantes beneficios económicos en un plazo más o menos breve.

En la agricultura, la biotecnología se orienta a la superación de los factores limitantes de la producción agrícola a través de la obtención de variedades de plantas tolerantes a condiciones ambientales negativas (sequías, suelos ácidos), resistentes a enfermedades y pestes, que permitan aumentar el proceso fotosintético, la fijación de nitrógeno o la captación de elementos nutritivos. También se apunta al logro de plantas más productivas y/o más nutritivas, mediante la mejora de su contenido proteínico o aminoácido.

Un desarrollo paralelo es la producción de pesticidas (insecticidas, herbicidas y fungicidas) microbianos. Las técnicas que ya se emplean, o que están desarrollándose, van desde los cultivos de tejidos, la fusión protoplasmática, el cultivo in vitro de "meristemas", la producción de nódulos de "rhizobium" y "micorizas", hasta la ingeniería genética para la obtención de plantas de mayor capacidad fotosintética, que puedan fijar directamente nitrógeno, resistentes a plagas y pestes, etc. El cultivo de tejidos consiste en la regeneración de plantas completas a partir de una masa amorfa, de células, que se denomina "callo". En su forma más general, se aplica a todo tipo de cultivo "in vitro", desde simples unidades indiferenciadas hasta complejos multicelulares y órganos. El proceso consiste en la incubación, en condiciones controladas y asépticas, de una célula o parte de un tejido vegetal (hoja, tallo, raíz, embrión, semilla, "meristema", polen, etc.) en un medio que contiene elementos nutritivos, vitaminas y factores de crecimiento.

Las aplicaciones de esta técnica se dan en tres áreas fundamentales: a) rápida micropropagación "in vitro" de plantas, b) desarrollo "in vitro" de variedades mejoradas y c)producción de "metabolitos" secundarios de interés económico para el cultivo de células de plantas. En el primer grupo se incluye el cultivo "in vitro" de "meristemas", que permiten la micropropagación de material de siembra uniforme y sano, y el cultivo de anteras, de gran utilidad al permitir la reducción del tiempo necesario en la selección de genes, y por lo tanto de gran ayuda en las técnicas tradicionales de hibridación. También incluye el cultivo y la fusión de "protoplastos", el cultivo de embriones, la mutación somática, etc.

Las ventajas principales del cultivo "in vitro" de plantas son: a) rápida reproducción y multiplicación de cultivos; b) obtención de cultivos sanos, libres de virus y agentes patógenos; c) posibilidad de obtener material de siembra a lo largo de todo el año (no estar sujetos al ciclo estacional); d) posibilidad de reproducir especies de difícil reproducción o de reproducción y crecimientos lentos; e) facilita la investigación y proporciona nuevas herramientas de gran utilidad en otras técnicas como la del "rADN", y f) mejora las condiciones de almacenamiento, transporte y comercialización de germoplasma, facilitando su transferencia internacional.

Algunas de las técnicas aplicadas son ya prácticamente de dominio público y tienen además costos relativamente bajos. Como ejemplo puede mencionarse los cultivos de tejidos, ampliamente utilizados para la producción de plantas ornamentales y con enorme potencial en plantas tropicales como la yuca, la palma de aceite, la patata dulce, el banano, la papaya, etc. En forma similar, la producción de "inóculos" de "rhizobium" es una actividad ampliamente utilizada en el cultivo de la soya en los Estados Unidos, Australia y Brasil, y que prácticamente ha eliminado la utilización de fertilizantes químicos en este cultivo. Un aspecto que es importante de destacar en el desarrollo de la biotecnología agrícola, es que tanto los procesos como los productos que se utilizan como insumos, están fuertemente condicionados por las características ecológicas, climáticas y geográficas, así como por la diversidad biológica y genética de cada área o región. Por lo tanto, el desarrollo biotecnológico aplicado a la agricultura tiene que ser llevado a cabo in situ. Por ejemplo, es sabido que cada especie de leguminosa existe una bacteria de "rhizobium" específica. Más aún, estas bacterias tienden a ser, además, específicas respecto de condiciones ecológicas y climáticas particulares, de tal manera que para cada leguminosa se necesita no sólo el "inóculo" de una bacteria determinada, sino que también esa bacteria se adapte a las condiciones ambientales en las cuales la leguminosa se cultiva. Así los "inóculos" de "rhizobium" que se utiliza para los cultivos de soya en los Estados Unidos no son efectivos en los cultivos de soya en Brasil, ya que las características de los suelos, la temperatura y la humedad difieren. La producción de "inóculos" debe realizarse en el lugar y para el producto para el cual se van a utilizar.

La magnitud del mercado potencial agrícola para la biotecnología es, en gran medida, materia de especulación debido precisamente a la falta de un conocimiento detallado de muchas de estas condiciones locales. En este campo, la biotecnología está orientada a la utilización en gran escala de "biomasa" para la producción de materias primas orgánicas, que actualmente se obtienen mediante procesos químicos convencionales. Las ventajas son que la "biomasa" es un recurso altamente subutilizado y relativamente barato., ya que en gran parte esta constituído por residuos y desechos de plantaciones forestales y de cultivos en gran escala. Es además un recurso renovable. Las principales fuentes potencialmente disponibles para la producción tanto de etanol como de otros productos químicos a granel son (aparte de las melazas de la caña) cultivos como la yuca, el sorgo, las papas y el maíz; los sueros de la industria de la leche; los residuos de las plantaciones de café y, en general, todo tipo de residuo celuloso.

Actualmente la biotecnología está siendo aplicada en gran escala en la producción de alcohol (etanol), como combustible sustituto del petróleo, fundamentalmente en el Brasil y en menor medida en Estados Unidos y la India. En el Brasil, la producción se logra a partir de melazas de la caña de azúcar, mientras que en Estados Unidos se usa el maíz. Otro producto importante es el ácido cítrico. Los principales productores son los Estados Unidos, Italia, Bélgica y Francia. Utilizan como materia prima melazas de remolacha.

La importancia que tiene cada una de las aplicaciones mencionadas es incuestionable desde el punto de vista económico. Como ejemplos concretos cabe mencionar las aplicaciones ya realizadas para la micropropagación de cultivos sanos de yuca, el desarrollo en curso de sistemas de reproducción para la palma africana (palma de aceite), el creciente comercio internacional de plantas ornamentales, la producción de material sano de patata y el creciente intercambio de "germoplasma". Por lo que respecta a la mayor rapidez en la obtención de híbridos, se han indicado las siguientes cifras: una nueva especie de tomate que por cruza tradicional se obtiene en un plazo de 7-8 años, por variación "somaclonal" se puede obtener en 3-4 años; en el caso de la caña de azúcar, el plazo se reduce de 14 a 7 años. Las diferentes técnicas de cultivo de tejidos están en distintas fases de desarrollo; algunas como el tejido "meristemático", ya han sido ampliamente aplicadas para la obtención de cultivos sanos y libres de virus (caso yuca, por ejemplo).

Otras técnicas tienen una maduración más lenta y su aplicación es de más largo plazo. Las técnicas de cultivo de tejidos se pueden clasificar, según la fecha de su aplicación en actividades económicas, en las siguientes categorías: Aplicaciones de corto plazo (dentro de los tres años) Aplicaciones de mediano plazo (dentro de los próximos ocho años) Aplicaciones de largo plazo (no antes de los próximos ocho años) Propagación vegetativa Variación "somaclonal" Hibridización somática Eliminación de enfermedades Variación "gametoclonal" Líneas celulares mutantes Intercambio de germoplasma Cultivos de embriones Transferencia de cromosomas Transferencia de genes pro cruza amplia Fertilización "in vitro" Ingeniería genética molecular Cultivo de anteras y "haploidea" Otra aplicación económica importante, aun cuando es de más largo plazo, es la obtención de "metabolitos" secundarios por cultivo celular. Hay cuatro grupos importantes de "metabolitos" secundarios: a) aceites esenciales, que se emplean como sazonadores, perfumes y solventes; b) glucósidos: "saponinas", aceite de mostaza para colorantes; c) alcaloides tales como morfina, cocaína, atropina, etc. de gran utilidad en la producción de fármacos, de los que se conocen más de 4000 compuestos, la mayoría de origen vegetal; d) enzimas: "hidrolasas", "proteasas", "amilasas", "ribonucleasas".

La obtención por procesos tradicionales de estos productos es ineficiente, estando sujeta a las variaciones estacionales y/o climáticas, dificultades de conservación y transporte, falta de homogeneidad del producto obtenido, etc. Frente a estos inconvenientes, el cultivo celular ofrece la posibilidad de un suministro regular de un producto homogéneo y sobre todo la perspectiva de lograr buenos rendimientos, dado que las plantas pueden ser "manipuladas" y su crecimiento es controlado. El cultivo celular permite la "rutinización" típica de las actividades industriales y por lo tanto la optimización de las operaciones. Finalmente, se vislumbra también la posibilidad de obtener nuevos compuestos por medio del cultivo celular. Para ello se prevén dos enfoques diferentes: a) el aislamiento de un cultivo capaz de alto rendimiento y b) el cultivo celular en gran escala y la obtención industrial de determinados productos.

4. Biotecnología Vegetal

Con las técnicas de la biotecnología moderna, es posible producir más rápidamente que antes, nuevas variedades de plantas con características mejoradas, produciendo en mayores cantidades, con tolerancia a condiciones adversas, resistencia a herbicidas específicos, control de plagas, cultivo durante todo el año. Problemas de enfermedades y control de malezas ahora pueden ser tratados genéticamente en vez de con químicos.
La ingeniería genética (proceso de transferir ADN de un organismo a otro) aporta grandes beneficios a la agricultura a través de la manipulación genética de microorganismos, plantas y animales.
Una planta modificada por ingeniería genética, que contiene ADN de una fuente externa, es un organismo transgénico. Un ejemplo de planta transgénica es el tomate que permite mantenerse durante mas tiempo en los almacenes evitando que se reblandezcan antes de ser transportados
En el mes de Enero del pasado año 2000, se llegó a un acuerdo sobre el Protocolo de la Bioseguridad. Europa y Estados Unidos acordaron establecer medidas de control al comercio de productos transgénicos.
Mas de 130 países dieron el visto bueno al acuerdo de Montreal, sin embargo, en este acuerdo existen partes con posiciones, que si no son incompatibles, sí son contradictorias en lo relativo al etiquetado y comercialización de estos productos:
· De una parte encontramos a EEUU y a sus multinacionales, que acompañados por otros grandes países exportadores de materias primas agrícolas, quieren una legislación abierta y permisiva, en la que el mercado sea quien imponga su ley. EEUU defiende el uso de la biotecnología y pone de relieve la importancia de su industria, que crea nuevos puestos de trabajo y fomenta la innovación tecnológica y podría acabar con el hambre del mundo.
· En el lado opuesto se encuentra la Unión Europea y otros países desarrollados de Asia, que pretenden poner orden y límite a ese comercio, empezando por un etiquetado riguroso que diferencie, tanto las materias primas como los productos elaborados en los que se incluyan organismos modificados genéticamente (OMG). Así mismo pretenden controlar y limitar el desarrollo de las patentes, propugnando incluso, una moratoria de 10 años, debido a que no se conoce con certeza los verdaderos efectos de esas manipulaciones genéticas sobre el resto de variedades vegetales y sobre el ecosistema. España ha sido acusada por grupos ecologistas y organizaciones agrarias como, COAG y UPA de ser uno de los países más permisivos en este aspecto.

· El sector más radical lo constituye aquellos los grupos conservacionistas y colectivos científicos que abogan por la prohibición de cualquier tipo de alteración de los códigos genéticos.
Las multinacionales de la biotecnología son las que, por ahora se están llevando el gato al agua. Los cinco gigantes son:
· AstraZeneca.
· DuPont.
· Monsanto.
· Novartis.
· Aventis.
Suponen el 60%_________________del mercado de pesticidas.
23%_________________del mercado de semillas.
100%_________________del mercado de semillas transgénicas.
Entre los cultivos transgénicos autorizados en la Unión Europea:

  1. Producto Empresa
    Tabaco Selta
    Soja Monsanto
    Colza PGS
    Maíz Novartis
    Colza AgrEvo
    Maíz (T25) AgrEvo
    Maíz (MON 810) Monsanto
    Maíz (MON 809) Ploneer
    Achicoria Bejo Zaden
    Colza AgrEvo
    Maíz Novartis
    Colza PGS
    Patata AVEBE
    Remolacha DLF-Trifolium
    Clavel Florigene
    Tomate Zeneca
    Algodón Monsanto
    Maíz DeKalb
    Patata Amylogene
    Clavel Florigene

Fuente.Unesco, Emst & Young, SEBIOT.

En Europa, los casos de Soja y Maíz transgénicos resultan de especial relevancia. La soja se utiliza en un 40 a 60% de los alimentos procesados: aceite, margarina, alimentos dietéticos e infantiles, cerveza, etc. España importa de EEUU 1´5 millones de toneladas, el cuarto país importador detrás de Japón, Taiwan y Holanda.
La comercialización del maíz transgénico está autorizada en EEUU, Canadá, Japón y también en la Unión Europea desde Enero de 1997.
¿Qué consecuencias puede traer el consumo de plantas y alimentos transgénicos?
China planea plantar tomates, arroz, pimientos y patatas por lo menos en la mitad de todas sus tierras de labor (500.000 kilómetros cuadrados) en el plazo de cinco años. Sus investigadores analizaron el efecto de los pimientos y los tomates transgénicos en ratas de laboratorio, comparando el peso y el estado de los mismos con los de otros no alimentados, y no observaron diferencias significativas.
La creación o elaboración de este tipo de alimentos depende del nivel de desarrollo del país, de los intereses políticos del mismo y del grado de presión que ejerzan las grandes industrias privadas del sector. Hay un gran debate en torno a la conveniencia o no de este tipo de organismos.
Entre los posibles beneficios que sus defensores alegan podemos señalar:
· Alimentos con más vitaminas, minerales y proteínas, y menor contenido en grasas.
· Cultivos más resistentes al ataque de virus, hongos insectos sin la necesidad de emplear productos químicos, lo que supone un mayor ahorro económico y menor daño al medio ambiente.
· Mayor tiempo de conservación de frutas y verduras.
· Cultivos tolerantes al sequía y estrés (Por ejemplo, un contenido alto de sal en el suelo).
Hay quien asegura que estos alimentos ponen en peligro la salud humana, provocando la aparición de alergias insospechadas. Por ejemplo, se han citado casos de alergia producida por soja transgénica manipulada con genes de la nuez de Brasil o de fresas resistentes a las heladas por llevar incorporado un gen de pescado (un pez que vive en aguas árticas a bajas temperaturas) En este caso, las personas alérgicas al pescado podrían sufrir una crisis alérgica al ingerir las fresas transgénicas.
Estas situaciones motivaron que organizaciones de consumidores y ecologistas pidieran que los productos elaborados con plantas transgénicas lleven la etiqueta correspondiente. Esta petición fue concedida con la aprobación el 15 de Mayo de 1997 del Reglamento CE nº 258/97 "sobre nuevos alimentos y nuevos ingredientes alimentarios" aprobado por el Parlamento Europeo y el Consejo de la Unión Europea el 27 de Enero de 1997.
En principio este Reglamento consideraba fuera de su aplicación a los productos derivados de la soja y maíz transgénicos, cuya comercialización había sido permitida con anterioridad, el 26 de Mayo de 1998 se aprobó el Reglamento nº1139/98/CE del Consejo por el que se exige el etiquetado de los alimentos e ingredientes alimentarios fabricados, total o parcialmente, a partir de maíz y de semillas de soja modificados genéticamente.
Sin embargo esta regulación es muy necesaria, ya que calmará, en cierto modo la alarma social existente en torno a las plantas y alimentos transgénicos. La sociedad conocerá poco a poco las características de estos productos y su temor ya no podrá basarse en el desconocimiento y temor a lo desconocido y novedoso, pudiendo entonces, aceptarlos o rechazarlos.

martes, 2 de junio de 2009

La revolucion cientifica



La revolucion Científica comprende un amplio espacio, en el cual fueron desarrollándose los hechos que dieron origen a dicho hecho. Esta revolucion como su nombre la indica, representa el cambio paradigmático de la era en cual reinaban formas de proceder como la especulación y la deducción. Pasando a tiempos en el cual se procede mediante una forma mas sustentada, es decir con soportes firmes basados en la ciencia pura, es decir de cierta forma se dejo de lado la visión aérea de los hechos.

Esta revolución, presenta las razones por las cuales la asimilación de un nuevo tipo de fenómeno o de una nuevateoria científica debe exigir el rechazo de unparadigma más antiguo, no se derivan de la estructura logica del conocimiento cientifico; pues podría surgir un nuevo fenómeno sin reflejarse sobre la práctica científica pasada.

Revolución Científica

Conceptos
Por revolución científica se denomina habitualmente el periodo comprendido entre 1500 y 1700 durante el cual se establecen los fundamentos conceptuales e institucionales de la ciencia moderna.
Se considera revolución científica a todos aquellos episodios de desarrollo no acumulativo, en que un paradigma antiguo es reemplazado completamente o en parte, por otro nuevo, incompatible.

En lo que a conceptos, el elemento central de la Revolución Científica es el abandono de la visión cosmogónica en la que la Tierra ocupaba el centro del Universo (sistema geocéntrico de Ptolomeo) y de la física aristotélica, por una en la que los planetas se mueven en torno al Sol (sistema heliocéntrico), una idea que, aunque también habían considerado algunos antiguos (Astiarco), fue introducida con detalle por Nicolás Copérnico.

3. Consecuencias de la revolución científica

Las consecuencias de la revolución científica, de la que Galileo y Newton fueron sus máximos exponentes, pueden dividirse en tres grandes grupos: consecuencias metodológicas, filosóficas, y religiosas:

Consecuencias metodológicas:

  • Desconfianza ante las "intuiciones" ingenuas del sentido común como intérprete de la realidad.
  • Se incrementa el valor de la observación y de la experiencia y la necesidad de la verificación empírica. Los sistemas puramente especulativos, como construcciones mentales deducidas a partir de unos principios universales no discutidas, ceden el paso a hipótesis de trabajo basadas en la experiencia y sujetas a una revisión continua.
  • Nuevo criterio de verdad.
  • La deducción, que había reinado desde Parménides, cede el trono a la inducción. Galileo la practica, y Bacon acomete la tarea de justificarla teóricamente y de elaborar su metodología, de forma que constituya el nuevo instrumento (Novum Organum) de la ciencia en sustitución del Organon aristotélico.
  • La expresión de la realidad se matematiza. La ciencia moderna desea predecir con exactitud los fenómenos, y para ello necesita conocer las leyes físico-matemáticas que los rigen.
  • Cada rama de la ciencia se independiza de las otras (aunque aproveche indirectamente sus avances).

Consecuencias filosóficas

  • Se derrumba la autoridad de Aristóteles. Se ve que Aristóteles se equivocó al afirmar el sistema geocéntrico de esferas, la incorruptibilidad de los astros, el cese del movimiento cuando cesa la causa, etc. El desprestigio de Aristóteles aumentó también por considerársele defensor a ultranza del método deductivo y la especulación pura.
  • Cambia el concepto de ciencia. Ya no interesa lo óntico, sino lo fenoménico; la realidad subyacente, sino el comportamiento aparente. Algunos científicos como Galileo y Kepler solo se interesan por establecer las leyes matemáticas de los movimientos.

Consecuencias religiosas

  • Autonomía de la ciencia frente a cualquier autoridad. La última palabra corresponde a la razón, que parte de la experiencia científica y vuelve a ella para verificar sus conclusiones.
  • El científico moderno suprime las explicaciones prenaturales de los fenómenos físicos, y busca sólo las causas inmanentes, intramundanas.

El papel de las leyes en las explicaciones científicas
Con Descartes, Galileo y Newton se desarrolló la idea de que el verdadero conocimiento es conocimiento de algo que está más allá de los fenómenos, que tiene una estructura definida y caracterizable matemáticamente. Decir que la realidad tiene una estructura que no está constituida por sustancias y, en particular, identificar la realidad con una estructura matemática de los fenómenos, nos permite formular la idea de que sí podemos tener conocimiento cierto de esa estructura.

Según Newton, la "deducción a partir de los fenómenos" requería el diseño de experimentos y la sistematización de observaciones en un marco de conceptos matemáticos que permitieran llegar a tener conocimiento de la estructura, de lo real, sin suponer que conocemos las causas últimas de lo real. Así, implícitamente, Newton distingue dos conceptos de "causa"; por un lado, habla de las leyes cuantitativas de la naturaleza como causas, en un sentido en el que ya Descartes hablaba de las leyes como causas secundarias, esto es, en el sentido de que apelar a esas leyes permite explicar los fenómenos. Por el otro, Newton habla de "causa" en el sentido del origen físico, en el nivel de la estructura corpuscular de la materia, del movimiento.

La estructura de los fenómenos o, más precisamente, las leyes de la naturaleza que describen la estructura de manera cuantitativa, eran para Newton, causas que explicaban los fenómenos, y en ese marco sería más correcto hablar de principios explicativos.

Newton señalaba que las leyes fundamentales de la naturaleza son descripciones de las fuerzas de interacción que se aplican universalmente. Estas leyes nos permiten explicar la estructura de los fenómenos en la medida en que, por lo menos es posible derivar las regularidades a las que tenemos acceso en la experiencia a partir de esas leyes fundamentales.

Parte del éxito de la propuesta de Newton se debió a que la ley de la gravitación universal salió a relucir a partir de cierta reformulación matemática de los fenómenos conocidos. Por esto Newton pudo hablar de "deducción", aunque el término no fuera estrictamente correcto. Pero el punto es que dadas ciertas restricciones, que no introducen hipótesis adicionales a los fenómenos, en el sentido de que no introducen otros principios explicativos, es posible deducir la ley de la gravitación a partir de los fenómenos en un sentido matemático estricto.

Newton mostró como, en algunos casos especiales pero importantes, y bajo ciertos supuestos, es posible "deducir" de la estructura de los fenómenos ciertas leyes generales que describen esa estructura y que pueden utilizarse como puntos de partida, como premisas de las explicaciones.

4. La revolución copernicana

Para Thomas Khun la revolución copernicana fue una revolución en el campo de las ideas, una transformación del concepto del universo que tenia el hombre hasta aquel momento y de su propia relación con el mismo, y tuvo lugar en las investigaciones astronómica. En 1543 Nicolás Copérnico se propuso incrementar la sencillez y precisión de la teoría astronómica vigente, transfiriendo al sol muchas de las funciones que hasta entonces se atribuían a la tierra. Esa revolución no se limita a una reforma astronómica, sino que con la publicación del The Revolution obus de Copérnico se produjeron enseguida una serie de cambios radicales en la forma de comprender la naturaleza por parte del hombre, innovaciones que culminaron un siglo mas tarde con el concepto newtoniano del universo.

Copérnico vivió y trabajó en un periodo caracterizado por rápidos cambios de orden político, económico e intelectual que prepararían las bases de la moderna civilización europea y americana, se convirtió en un foco de las apasionadas controversias religiosas, filosóficas, y sociales.

La concepción aristotélica del cosmos fue la principal fuente y el punto de apoyo para la practica astronómica precopernicana. El principio de autoridad típicamente medieval que emanaba de los escritos de Aristóteles deriva del brillo y la originalidad de sus ideas, y de su extensión y coherencia lógica. El espacio newtoniano es físicamente neutro, al contrario del primitivo, que podríamos denominar como un espacio vital. Si bien la ciencia jugo un importante papel a finales de la Edad Media, no debe olvidarse que las fuerzas intelectuales dominantes eran teológicas. Sin embargo, las criticas escolástica a la obra de Aristóteles ofrecieron unas alternativas importantes en algunos puntos específicos, que desempeñaron una función de máxima importancia en la preparación del camino de Copérnico.

La teoría copernicana se desarrolló en el marco de una tradición científica apadrinada y apoyada por la Iglesia. La ciencia pagana y secular derivada de los contactos con el oriente musulmán y bizantino dejaban de ser una amenaza siempre que la Iglesia pudiera seguir manteniendo su liderazgo intelectual a través de la integración de las concepciones procedentes de aquella. Dentro de una erudición de corte cristiano, se mantuvo a lo largo de cinco siglos el monopolio católico sobre la ciencia. La estructura física y cosmológica del nuevo universo cristiano plenomedieval era básicamente aristotélica, derivada de las concepciones de Tomas de Aquino (1225-1274). La critica que realizaron los escolásticos al sistema aristotélico tienen sus mayores exponentes en Nicolás de Oresme y su maestro Juan Buridan durante el siglo XIV. Los siglos durante los que perduró la escolástica son aquellos en que la tradición de la ciencia y la filosofía antigua fue simultáneamente reconstruida, asimilada y puesta a prueba, a medida que iban siendo descubiertos puntos débiles, se convertían de inmediato en focos de las primeras operaciones investigativas del mundo moderno.
Para los europeos contemporáneos a Copérnico, la astronomía planetaria era un campo casi nuevo, que fue elaborado en un clima intelectual y social muy distinto de que hasta entonces se habían enmarcado los estudios astronómicos.
La vida de Copérnico transcurrió entre 1473 y 1543, las décadas centrales del Renacimiento y la Reforma. La agitación en la Europa renacentista y reformista facilitaron la innovación astronómica de Copérnico.

5. Teóricos de la ciencia

Gilbert Hottois
Según Gilbert Hottois, la ciencia antigua era una ciencia logoteórica, lo que quiere decir que estaba formada por el lenguaje (lógos) y la visión intelectual o espiritual (theoría). Tal ciencia estaba constituida por el lenguaje: la ciencia antigua se formula con ayuda del lenguaje ordinario, es discursiva; utiliza las palabras de la lengua natural, que redefine, precisa e intenta articular rigurosamente. Es producto de la reflexión activa (es decir, la especulación) sobre la organización lingüística o simbólica de lo real.

La forma que adopta la ciencia aristotélica es una forma lógica, demostrativa, silogística. Lo que es objeto de conocimiento científico, según Aristóteles, es la conclusión universal y necesaria de un silogismo. En las premisas del silogismo está contenida la explicación de la conclusión. La explicación es el porqué, lo que Aristóteles denomina la causa. Pero es una causa lógica o semántica, es decir, que expresa un encadenamiento conceptual o de significaciones, sin relación alguna con la causalidad mecánica y empírica de la ciencia moderna.

La lógica (la silogística) es el verdadero Organon de la ciencia, lo que quiere decir la herramienta, el método por excelencia de la ciencia, el instrumento de su despliegue riguroso y definitivo. Fundamentalmente, la ciencia aristotélica es, pues, intuitiva y deductiva, teórica (o contemplativa) y discursiva (o verbalista).

La ciencia moderna
La ciencia moderna se inicia propiamente con Francis Bacon. La principal obra de éste es el Novum Organum. Tradicionalmente el término "Organon" designa el conjunto de los tratados de lógica de Aristóteles y define la lógica como instrumento de la ciencia. La obra de Francis Bacon se opondrá a esta concepción. El Novum Organum tiene, a la vez, un aspecto crítico (de la ciencia tradicional) y un aspecto positivo (una nueva forma de concebir la ciencia). Los principales aspectos de la crítica de Bacon a la ciencia tradicional son los siguientes:

  • La lógica (la silogística) no es ni el instrumento ni la forma por excelencia del saber;
  • Una ciencia lógica sólo es una ciencia a priori y formal, vacía; no enseña nada, puesto que se limita a explicitar el contenido de las premisas;
  • La ciencia debe ser inductiva y no deductiva; pero no se trata de la inducción aristotélica, que sólo es una intuición inmediata de lo universal en lo particular;
  • La ciencia lógica opera con palabras, es decir, con las "etiquetas de las cosas", e ignora éstas; es preciso terminar con la confusión de las palabras y las cosas, origen esencial del saber filosófico antiguo. El lenguaje no ofrece representación correcta de lo real y no es una fuente fiable para la ciencia;
  • Es menester rechazar la ciencia libresca, rehusar todo prejuicio y argumento de autoridad en el estudio de la naturaleza;
  • Es menester distinguir entre causas finales y causas eficientes, y limitarse a la investigación de las causas eficientes para la explicación científica de los fenómenos.

Desde el punto de vista positivo, el Novum Organum, exige:

  • Practicar la inducción en sentido moderno, es decir, la liberación progresiva de las identidades y de las diferencias reales gracias a la observación y a la comparación repetida de las observaciones;
  • Practicar la experiencia en el sentido de la experimentación, es decir, no conformarse con observar pasivamente; utilizar instrumentos y técnicas;
  • Verificar, escoger, confirmar y corregir incansablemente a fin de distinguir entre las causas eficientes verdaderas y los factores marginales, las circunstancias accidentales de un fenómeno.

Según Bacon, la ciencia moderna deberá ser:

  • activa, operatoria, eficaz y no contemplativa y verbal. Esta relación activa, caracteriza la investigación y la aplicación
  • técnica: la utilización de instrumentos y de procedimientos determinados permite explicar y controlar los fenómenos;
  • potente y operativa: el fin último del conocimiento está en aumentar el control, la potencia, el dominio del hombre sobre la naturaleza, con el propósito de someterla a sus necesidades y proyectos. Para la ciencia nueva, saber es poder.

Copérnico
La idea del heliocentrismo parece que le sobrevino a Copérnico halla por los años 1505 o 1506; en efecto, en 1512 Copérnico escribió e hizo circular entre sus amigos una exposición (De hypotesibus coelestium a se constituis Commentariolus) que ofrece, en forma esquemática y breve, los principios de la nueva astronomía. La obra entraba en abierta contradicción con lo que decían las Sagradas Escrituras, Para salvar esta dificultad, Ossiander propuso a Copérnico la idea de presentar su sistema no como algo real, sino adoptar una concepción fenomenista de la ciencia. Esta concepción fenomenista de la ciencia es expuesta en el prólogo de Ossiander a la obra de Copérnico.

La ciencia – y en especial la astronomía – no tiene, según Ossiander, sino un fin único, un solo objeto, el de "salvar los fenómenos". Su misión consiste en relacionar y ordenar sus observaciones por medio de hipótesis que permitan calcular, prever y predecir las posiciones (visibles y aparentes) de los planetas.

  • Los dos ejes centrales sobre los que gira la teoría de Copérnico son: 1) colocar al Sol, inmóvil, en el centro del Universo y 2) hacer de la Tierra un planeta más que gira en torno al Sol.

Filosofía científica
Las Regulae philosophandi, colocadas por Newton al principio del tercer libro de los Principia, nos enseñan la filosofía científica del autor.
Regla I: Debemos admitir únicamente aquellas causas de cosas naturales que son verdaderas y suficientes para explicar las apariencias.
Regla II: A los mismos efectos naturales debemos asignarles las mismas causas.
Regla III: Las cualidades [propiedades] de los cuerpos que no admiten aumento o disminución de grado, y que encontramos en todos los cuerpos al alcance de nuestros experimentos, deben considerarse como las cualidades universales de los cuerpos.
Regla IV: En la filosofía experimental debemos buscar proposiciones seleccionadas por medio de una inducción general a partir de fenómenos exactos o muy cercanos a la verdad, a pesar de la posibilidad de imaginarse hipótesis contrarias, hasta
que llegue el momento en el que ocurran otros fenómenos que sean más exactos, o que muestren que estas proposiciones tienen excepciones.
La regla III es un intento por caracterizar aquellas propiedades que, según Newton, son epistemológicamente básicas en el sentido en que lo explica la siguiente regla metodológica: las cualidades [propiedades] universales de las cosas son derivables de los fenómenos.

Newton avanza la tesis de que no es posible refutar -filosófica o científicamente- ningún descubrimiento por el hecho de que parezca contradecir o contradiga un principio general, un postulado, un sistema o cualquiera otra «hipótesis» Lo importante es que la especulación no sea «hipotética». La oposición no se establece entre hipótesis y experimentos, sino entre descubrimiento y convencimiento. Pues todo lo que no se deduce de los fenómenos es una hipótesis; y las hipótesis, no deben ser recibidas en filosofía experimental. Newton, en los mismos Principia, viola a actitud de hypotheses non fingo y las reglas que él mismo había fijado a toda inducción y a toda analogía generalizadora. La actitud del hypotheses non fingo tiene más bien en Newton el carácter de un repliegue o retirada tácticos. Disgustado por las polémicas que había tenido que sostener en la Optica, Newton quiso cortar por lo sano toda discusión, dando así a su Física un lenguaje exclusivamente matemático sobre una sólida base experimental.

Thomas Khun
Thomas Khun es uno de los más destacados referentes por su obra La Estructura de las Revoluciones Científicas. Para Khun la historia de la ciencia tiene periodos de crisis o de revoluciones, y periodos de "ciencia normal". En los periodos de ciencia normal los sabios trabajan para desarrollar las implicaciones sobre puntos particulares. Se relaciona con el termino paradigma en el sentido que la ciencia normal, debe responder al paradigma dominante. La investigación, en los períodos de ciencia normal es tratada de manera que los hechos que estudia puedan ser clasificados en las casillas suministradas por el paradigma. La investigación normal se preocupa muy poco de encontrar novedades. Cuando un enigma científico es tan grande que no puede ser resuelto y llega a ser considerado como una anomalía, aparece una transición hacia una crisis, es el pasaje de la ciencia normal a la ciencia extraordinaria. Las revoluciones científicas o periodos de ciencia extraordinaria aparecen cuando los especialistas no pueden ignorar por mas tiempo las anomalías que aparecen.

Para que una revolución científica tenga lugar, el sabio debe renunciar a la visión del mundo que tenia hasta ese momento y adecuarse a una nueva visión.
Dice Khun al respecto de la revolución científica: La ciencia normal es la que produce los ladrillos que la investigación científica esta continuamente añadiendo al creciente edificio del conocimiento científico.

(...) Los cambios revolucionarios son diferentes (...), ponen en juego descubrimientos que no pueden acomodarse dentro de los conceptos que eran habituales antes de que se hicieran dichos descubrimientos.

Las características del cambio revolucionario que Khun enumera, son las siguientes: a) los cambios revolucionarios son en un sentido holistas, no pueden hacerse poco a poco y contrasta así con los cambios normales o acumulativos; b) se desarrolla un cambio en que se determinan sus referentes, en el lenguaje no solo se alteran los criterios con que los términos se relacionan con la naturaleza, altera además el conjunto de objetos o situaciones con los que se desarrollan esos términos, se genera un cambio en las categorías taxonómicas. La característica esencial es su alteración del conocimiento de la naturaleza intrínseco al lenguaje mismo. La violación o distorsión de un lenguaje científico que previamente no era problemático es la piedra de toque de un cambio revolucionario.

Alexandre Koyré
Está incluido en el denominado campo francés. Su método consiste en preguntarse, frente a un autor, a su obra, cuales fueron en su época las limitaciones de lo pensable y dentro de esos límites, qué explica que ese pensamiento haya aparecido en lugar de otro. De la misma forma que Bachelard y la mayoria de científicos y filosofos en el campo francés, Koyré asume una posición "discontinuista" en epistemología e historia de las ciencias, característica por ejemplo, de Michel Foucault, en quien influyo fuertemente. Señala que el cambio del pensamiento filosófico y científico del siglo XVII, transforma al hombre de espectador de la naturaleza en posesor y maestro, conduciendo finalmente a la mecanización de la concepción del mundo. Coincide con Bachelard en su antiempirismo: para él la experiencia es secundaria, el mundo de las ideas es fundamental.

Dice que el papel de la "subestructura filosófica" ha sido de suma importancia –sino fundamental- en el desarrollo de las ciencias, a pesar toda la carga en contra de esa subestructura por parte de los historiadores de orientación positivista de los siglos XIX y XX. Las grandes revoluciones científicas siempre han estado determinadas por conmociones o cambios de concepciones filosóficas.
El pensamiento científico (...), no se desarrolla in vacuo, sino que siempre se encuentra en el interior de una cuadro de ideas, de principios fundamentales, de evidencias axiomáticas que habitualmente han sido consideradas como pertenecientes a la filosofía.

Tycho Brahe (1546-1601)
Fue la autoridad más importante durante la segunda mitad del siglo XVI en materia de astronomía, aunque mostraba una línea de pensamiento relativamente tradicional, incluso opuesta a Copérnico. Sin embargo, Brahe fue responsable de cambios de enorme importancia en las técnicas de observación astronómica y en los noveles de precisión que exigían la recolección de datos astronómicos. El sistema de Tycho Brahe, conocido como ticónico, es una adecuación como solución de compromiso a los problemas planteado por el De Revolutionibus, ya que mantiene a la tierra en el centro del universo, por lo que reconcilia su propuesta con las Escrituras.

Johanes Kepler (1571-1630)
Es uno de los mas célebres colegas de Brahe, fue copernicano toda su vida, aunque trabajó con argumentos matemáticos mucho mas sólidos. La intuición física kepleriana introduce un concepto mas de suma importancia en el desarrollo de la ciencia en el futuro: el anima motrix, fuerza que emanaba del sol y responsable de la órbita de los planetas. Al resolver este problema, Kepler acabo por convertir al copernicanismo a todos los astrónomos a partir de 1627, cuando publica las Tablas Redolfinas.

Lo que es realmente nuevo en la concepción el mundo de Kepler es la idea de que el universo esté regido en todas partes por las mismas leyes y por leyes de naturaleza estrictamente matemática. Su universo es, sin duda, un universo estructurado, jerárquicamente estructurado en relación al sol y armoniosamente ordenado por el Creador, que se manifiesta a sí mismo en él como en un símbolo.

Galileo Galilei (1564-1642)

Escrutaba a partir de 1609 los cielos con un telescopio por primera vez, instrumento que permitió descubrir en sus manos innumerables testimonios a favor del copernicanismo, aportando a la astronomía los primeros datos cualitativos desde los recogidos en la antigüedad. Galileo es antimágico en el mas alto grado. (...) Lo que le anima es la gran idea de la física matemática, de la reducción de lo real a lo geométrico.

(...) Galileo se nos presenta al mismo tiempo como uno de los primeros hombres que comprendió de manera muy precisa la naturaleza y el papel de la experiencia en las ciencias.
Con Galileo y después de Galileo tenemos una ruptura entre el mundo que se ofrece a los sentidos y el mundo real, el de la ciencia. Este mundo real es la geometría hecha cuerpo, la geometría realizada.

René Descartes (1596-1650)
Es considerado como el fundador de la filosofía moderna. No acepta las bases filosóficas establecidas e intenta construir un edificio filosófico completo de novo. De la misma manera que Bacon, Descartes concibió a la ciencia como una pirámide cuya cúspide estaba ocupada por los principios generales de la realidad. Descartes propuso que el conocimiento científico se inicia en la cumbre y de ahí procede hasta abajo, siguiendo el camino de la deducción. Tiene la certeza de que el conocimiento puede alcanzarse a priori, en ausencia de la realidad y la experiencia, cuya síntesis es su cogito ergo sum. Los aspectos más sobresalientes de la filosofía cartesiana son el dualismo y el mecanicismo. Con respecto al primero, postula la existencia de dos mundos paralelos pero incapaces de articularse entre sí: el cuerpo y la mente. Con relación al segundo, la filosofía cartesiana es rígidamente determinista.


6. El desarrollo de la revolución científica

Tomando la concepción de la historia de la ciencia de Koyré, el panorama de la filosofía moderna del siglo XVII, y su relación con la ciencia, o más exactamente como la filosofía natural se fue gradualmente escindiendo hasta convertirse en dos entidades separadas e incluso opuestas: la filosofía y la ciencia.

Los caracteres generales de la filosofía del siglo XVII: este periodo señala la madurez de la conciencia filosófica moderna y abarca su etapa más productiva. Se desarrolla un pensamiento cuyos caracteres difieren notablemente del renacentista anterior. Encontramos nuevos métodos en las prescripciones baconianas y cartesianas, de hecho, la filosofía moderna adulta se inaugura con dos tratados metodológicos: el Novum Organon de Francis Bacon, y el Discurso del Método de Rene Descartes. La filosofía del siglo XVII adopta un tono severo muy próximo al de las ciencias, y mantiene con estas una estrecha relación.

Para el progreso del pensamiento, especialmente de las ciencias, fue considerable la creación de las Academias, que contrastaba con el envejecido y anquilosado de las Universidades. A partir del siglo XVII la ciencia adquiere un ímpetu y una influencia sobre la vida humana que antes no poseía, se inicia lo que podría llamarse la profesionalización de la filosofía en ciencia. Este es el primer siglo en que se puede distinguir, aunque no con precisión, estos dos tipos de sabios: científicos y filósofos. En este momento los filósofos ya no pueden considerase "hombres de ciencia". A partir del siglo V A. C. Cuando surgieron los primeros filósofos naturales, y hasta bien entrado el siglo XVI D.C., la ciencias y la filosofía fueron la misma cosa, tuvieron el mismo nombre: filosofía natural, y fueron cultivadas sin distinción desde Tales de Mileto hasta Leonardo Da Vinci. Naturalmente, al iniciarse la separación entre científicos y filósofos, la nuevas especie que predomino por buen tiempo fue la híbrida. Sin embrago, los hombres del siglo XVII, tenían ya su vista dirigida al futuro y sus esperanzas en este mundo, diferente de los de la Edad Media.

El profeta de la nueva filosofía era Francis Bacon (1561-1626), quien llegó a prometer que la nueva filosofía conduciría a la Instauratio Magna, la restauración de todas las cosas por la ciencia. Propuso el método inductivo, que presuponía reunir gran cantidad de hechos, a los que se llegaba por medio de la observación y la experimentación. El método baconiano surgió como un intento de corregir las deficiencias de la teoría aristotélica clásica, pero en realidad solo aporto un procedimiento para hacer inducciones graduales y progresivas, y un método de exclusión. Otra gran contribución fue su insistencia en que el conocimiento científico no solo conduce a la sabiduría, sino al poder, y que la mejor ciencia es la que se institucionaliza y se lleva a cabo por investigadores
La innovación más fructífera fue la conjunción del sistema deductivo de Descartes con el método inductivo de Bacon. Lo que provocó en gran parte la explosión científica del siglo XVII fueron los dos sistemas: la reunión de los "hechos" de Bacon y la luz del análisis cartesiano.

De La revolución copernicana a newton
(...) Una serie de características especificas de esa época tuvo efectos más concretos sobre la astronomía. El Renacimiento fue un periodo de viajes y exploraciones. Las necesidades de la exploración contribuyeron a crear una demanda de astrónomos competentes, con lo que, hasta cierto punto, cambio la actitud de estos hacia su propia ciencia. Cada nuevo viaje revelaba nuevos territorios, nuevos productos y nuevos pueblos. Los hombres no tardaron en comprender hasta que punto podía ser erróneas las antiguas descripciones de la tierra.

(...) Las discusiones en torno a las reformas de los calendarios tuvieron un efecto más directo y dramático en la práctica de la astronomía renacentista, pues el estudio de aquellos enfrentó a los astrónomos con la inadecuación e insuficiencia de las técnicas de computación que se venían empleando. Dicha reforma se convirtió entonces en un proyecto oficial de la Iglesia. (...) El calendario gregoriano, adoptado por primera vez en 1582, se basaba sobre el establecimiento de cálculos fundados en Copérnico. Puede comprenderse entonces porque la revolución copernicana se realizó ocurrió precisamente en ese momento. El humanismo también desempeñò un papel de carácter intelectual.

(...) la época del Renacimiento fue la menos dotada de espíritu crítico que haya conocido el mundo. Es la época de las más burda y profunda superstición, una época en que la creencia en la magia y en la brujería se propagó de una manera prodigiosa y estuvo infinitamente mas extendida que en la Edad Media.
(...) el gran enemigo del Renacimiento, desde el punto de vista filosófico y científico, fue la síntesis aristotélica, y se puede decir que su gran obra es la destrucción de esta síntesis. (...) La credulidad, la creencia en la magia, parecen consecuencias directas de esta destrucción. Efectivamente, después de haber destruido la física, la metafísica, y la ontología aristotélicas, el Renacimiento se encontró sin física y sin ontología, es decir, sin posibilidad de decidir con anticipación si algo es posible o no. (...) Una vez que esta ontología es destruida y antes de que una nueva, que no se elabora hasta el siglo XVII, haya sido establecida, no hay ningún criterio que permita decidir si la información que se recibe de tal o cual "hecho" es verdadera o no. De esto resulta una credibilidad sin limites.

Una de las características del humanismo, el desapego de lo mundano, derivaba de una tradición filosófica que ejerció gran influencia en los primeros padres dela Iglesia, eclipsada después del siglo XII con el redescubrimiento de Aristóteles: el neoplatonismo. Dicha tradición, descubría la realidad no en las cosas efímeras de la vida cotidiana, sino en un mundo espiritual exento de todo cambio:
el neoplatonismo pasó de un salto desde el cambiante y corruptible mundo de la vida cotidiana al mundo eterno del espíritu puro, y las matemáticas mostraron la forma de llevar a cabo su cabriola. En el universo de Platón, la divinidad se hallaba convenientemente representada por el sol, que proporcionaba luz, calor y fertilidad.
(...) La publicación del De Revolutionibus orbium caelestium inaugura un profundo cambio dentro del pensamiento astronómico y cosmológico. De ella se deriva un enfoque nuevo de la astronomía planetaria

La Revolución Copernicana Y La Iglesia
La Iglesia jugò un importante papel en la època cuando todas las obras en las que se admitía el movimiento de la tierra, se prohibió a los católicos enseñar, e incluso leer, las teorías copernicanas.

La teoría copernicana planteaba algunos problemas de enorme importancia para los cristianos, obviamente de índole teológicos. Dirigentes como Lutero y Calvino blandieron las Escrituras contra Copérnico e incitaron a la represión contra sus seguidores, pero en general el protestantismo abandona la lucha una vez que las teorías de Copérnico se vieron confirmadas con pruebas indiscutibles.

Durante los sesenta años posteriores a la muerte de Copérnico, la oposición de los católicos a su teoría fue mínima comparada con la desplegada por los protestantes. Durante los siglos XIV, XV y XVI la Iglesia no impuso doctrina alguna a sus fieles en materia de cosmología.

Camino al nuevo universo

Rasgos que caracterizaron a la ciencia moderna: 1°, la destrucción del cosmos y, por consiguiente, la desaparición en la ciencia de todas las consideraciones fundadas en esta noción; 2° la geometrización del espacio, es decir, la sustitución de la concepción de un espacio cósmico cualitativamente diferenciado y concreto, el de la física pregalileana, por el espacio homogéneo y abstracto de la geometría euclidiana.

Divide la transición a la ciencia moderna en tres etapas o épocas, que corresponden a tres tipos diferentes de pensamiento: primero, la física aristotélica; a continuación, la física del ímpetus, salida, como todo el resto, del pensamiento griego y elaborada en el curso del siglo XIV por los nominalistas parisienses; Finalmente, la física moderna, matemática, del tipo de Arquímedes o Galileo.
La física del ímpetus progresó mucho en los trabajos de Galilei, bajo la influencia innegable de Arquímedes y Platón, sin embargo, encuentra que es imposible matematizar, es decir, transformar en concepto exacto, matemático, la grosera, vaga y confusa teoría del ímpetus.

El atomismo comenzó a resurgir intensamente a partir del siglo XVII, y mezclado con el copernicanismo se convirtió en uno de los principios fundamentales de una nueva filosofía que guiaba la imaginación científica.

Durante el proceso conocido como Revolución Científica que llevó a la instauración de la ciencia moderna, hemos visto como la filosofía aristotélica propia del medioevo y que representaba la autoridad de la Iglesia, fue reemplazada por el neoplatonismo; cómo el principio de autoridad que ejercía la Iglesia a través de las Escrituras y los textos, tanto religiosas como filosóficas y científicas, fue reemplazado por otro nuevo criterios de verdad, con la teoría –hipótesis-, y la observación de la realidad; cómo la filosofía y las ciencias se van paulatinamente diferenciando y distanciando hasta convertirse en disciplinas diferentes; en el campo del lenguaje fueron mutando conceptos que facilitaron la comprensión de la realidad, como por ejemplo el concepto de ímpetus en el de inercia, para dar finalmente con la Ley de Gravitación Universal; pero fundamentalmente, la revolución científica representa y contribuyo significativamente a la visión del universo que aun hoy en la actualidad tenemos, y que es uno de los pilares de la modernidad.

7. Revolución científica aplicada

Instituciones Científicas
En estas se crearon instituciones como las primeras sociedades científicas realmente significativas y estables.

Laboratorios.
Hay indicios de que el laboratorio estaba inicialmente ligado exclusivamente con la alquimia/química; solamente de manera gradual, parece, se extendió el término para describir todos aquellos lugares en donde tenía lugar la investigación mediante manipulaciones de los fenómenos naturales. No obstante, sin duda que cualquier exposición con pretensiones de completud acerca del desarrollo del laboratorio en los orígenes de la ciencia moderna debe incluir no sólo el laboratorio químico, sino también el teatro anatómico, el gabinete de curiosidades, el jardín botánico y el observatorio astronómico.

La aparición del laboratorio es indicativa de un nuevo modo de investigación científica, uno que involucra la observación y manipulación de la naturaleza mediante instrumentos especializados, técnicas y aparatos que requieren de habilidades manuales, al igual que de conocimiento conceptual para su construcción y explotación. Fue uno de los rasgos distintivos de la nueva ciencia que emergió de los siglos XVI y XVII.

Academias.
Las primeras academias surgieron en la Italia del siglo XV. Los trabajos de aquellas primeras academias eran de alcances enciclopédicos. Mientras la Academia Platónica de Florencia se dedicaba principalmente a la filosofía, los estudios de la Academia Romana se enfocaron más hacia el conocimiento clásico la arqueología, y la gran labor de la Academia Veneciana consistía en hacer asequibles para toda Europa tesoros del pensamiento y literatura griegos imprimiendo ediciones de esos clásicos.

Entre las del siglo XVII surgieron las primeras que podríamos denominar "modernas". Comenzando con la Academia dei Lindei en Roma (1601-1630). La idea era establecer "monasterios comunales científicos, no monacales", no solamente en Roma, sino en todo los confines del globo. Habría una biblioteca, un museo y una imprenta, además de instrumentos científicos, jardines botánicos o laboratorios.

Surgió después la Academia del Cimento (cimento significa experimento) de Florencia (1657-1667), en la que nueve científicos (la mayor parte discípulos de Galileo) se esforzaron durante una década en construir instrumentos, desarrollar sus habilidades experimentales y buscar verdades básicas.

De Italia el modelo de las academias se fue extendiendo a Inglaterra, con la Royal Society (1660), que llegó a presidir Newton; a Francia con la Académie des Sciences (1666); a Alemania con la Academia de Berlín (1700). Comenzaba de esta manera una nueva era de la ciencia.

Comunicaciones científicas.
El siglo XVII fue entonces cuando los medios de transporte y comunicación mejoraron considerablemente, expandiéndose su utilización. Así la diligencia, que fue introducida en Londres en 1608, se difundió rápidamente por el país y en 1685 había un sistema de servicio de diligencias entre Londres y las estaciones terminales importantes de toda Inglaterra, que llegaban hasta Edimburgo. El desarrollo de las comunicaciones fue similar. A mediados del siglo XVII se creó en Inglaterra una oficina postal general para la correspondencia privada. Las relaciones postales internacionales mejoraron continuamente, de modo que a fines del siglo la comunicación con el continente europeo era constante y regular. Así, la correspondencia entre los científicos, que constituyó el único medio de comunicación científica a principios del siglo XVII, se vio facilitada por las mejoras en el servicio postal.

Revistas
Otro medio de comunicación y difusión científica, desarrollado durante la revolución científica, fueron las revistas donde se publicaron descripciones de muchas de las principales investigaciones de la época.

La Tecnología
Antes del siglo XIX la ciencia y la tecnología eran actividades esencialmente separadas. Lo que no impidió que ambas avanzaran. Se trata de una coincidencia el que la Revolución Científica comenzada durante el siglo XVII y desarrollada en el XVIII, haya precedido a las revoluciones industriales que se diseminaron por Europa durante los siglos XVIII y XIX. Hasta la segunda mitad del siglo XIX las innovaciones tecnológicas importantes casi nunca provinieron de las personas, las instituciones, o los grupos sociales que trabajaban para las ciencias.

Aunque los científicos hicieron algunas incursiones en la tecnología, quienes verdaderamente contribuyeron al desarrollo tecnológico fueron predominantemente los maestros de oficios, los artesanos, los trabajadores y los ingeniosos inventores, individuos que basaban sus innovaciones en la experiencia. Aunque no fuese ciencia aplicada, existía tecnología.

8. Conclusión

Una revolución implica de manera inmediata, un cambio es por esto, lo representativo de la revolución científica. La misma represento la sustitución del paradigma existente de la ciencia antigua, la cual se vio fuertemente cuestionada por los nuevos lineamientos estipulados por los "teóricos de la ciencia" encaminados primordialmente por Nicolás Copérnico. Tanto así que esto dio lugar a fuertes aplicaciones de la ciencia como tal, en la Creación de asociaciones científicas en el orden de laboratorios, academias, y hasta comunicaciones científicas.

Durante el proceso conocido como Revolución Científica que llevó a la instauración de la ciencia moderna, hemos visto como la filosofía aristotélica propia del medioevo y que representaba la autoridad de la Iglesia, fue reemplazada por el neoplatonismo; cómo el principio de autoridad que ejercía la Iglesia a través de las Escrituras y los textos, tanto religiosas como filosóficas y científicas, fue reemplazado por otro nuevo criterios de verdad, con la teoría –hipótesis-, y la observación de la realidad; cómo la filosofía y las ciencias se van paulatinamente diferenciando y distanciando hasta convertirse en disciplinas diferentes; en el campo del lenguaje fueron mutando conceptos que facilitaron la comprensión de la realidad, como por ejemplo el concepto de ímpetus en el de inercia, para dar finalmente con la Ley de Gravitación Universal; pero fundamentalmente, la revolución científica representa y contribuyo significativamente a la visión del universo que aun hoy en la actualidad tenemos, y que es uno de los pilares de la modernidad.